Methods for Improving Exergetic Efficiency of Multi-evaporators Single Compressor and Single Expansion Valve in Vapour Compression Refrigeration Systems Using Thirteen Ecofriendly Refrigerants for Reducing Global Warming and Ozone Depletion

نویسنده

  • R S Mishra
چکیده

The methods for improving second law efficiency have been considered in this paper by using liquid vapour heat exchanger is investigated in this paper. Detailed energy and exergy analysis of multi-evaporators at different temperatures with single compressor and single expansion valve using liquid vapour heat exchanger vapour compression refrigeration systems have been done in terms of performance parameter for R507a, R125, R134a, R290, R600, R600a, R1234ze, R1234yf, R410a, R407c, R707, R404a and R152a refrigerants. The numerical computations have been carried out for both systems. It was observed that first law and second law efficiency improved by 20% using liquid vapour heat exchanger in the vapour compression refrigeration systems. It was also observed that performance of both systems using R717 is higher but R600 and R152a nearly matching same values under the accuracy of 5% can be used in the above system .But difficulties using R152a, R600, R290 and R600a have flammable problems therefore safety measures are required using these refrigerants. Therefore R134a refrigerant is recommended for practical and commercial applications although it has slightly less thermal performance than R152a which is not widely used refrigerant for domestic and industrial applications

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Exergy Analysis of HFO-1234yf and HFO-1234ze as an Alternative Replacement of HFC-134a in Simple Vapour Compression Refrigeration System

An Exergy method for theoretical analysis of a traditional vapour-compression refrigeration system equipped with liquid vapour heat exchanger (lvhe) for HFO-1234yf (2, 3, 3, 3-Tetrafluoropropene) and HFO-1234ze (trans-1, 3, 3, 3-tetrafluoroprop-1-ene), both ultra low Global Warming Potential(GWP) and zero Ozone Depletion Potential(ODP) refrigerants and comparison of the results with HFC-134a re...

متن کامل

Testing of Environment Friendly Refrigerant R290 for Water Cooler Application (RESEARCH NOTE)

This paper presents environment friendly refrigerant R290 as a solution to the environmental concerns like depletion of ozone layer and rise in global warming because of wide use of synthetic refrigerants R22 and R134a. The water cooler is the widely used refrigeration application in warm climatic countries. Refrigerant R22 and R134a are predominantly used refrigerants in water cooler refrigera...

متن کامل

Exergy, exergoeconomic and exergoenvironmental studies and optimization of a novel triple-evaporator refrigeration cycle with dual-nozzle ejector using low GWP refrigerants

In this work, a novel dual-nozzle ejector enhanced triple-evaporator refrigeration cycle (DETRC) without separator is proposed to improve the performance of the conventional ejector one (CETRC). The performance of DETRC is analyzed and compared with CETRC in term of energy coefficient of performance (COPen). Under given operating conditions, the COPen improvement of the no...

متن کامل

Experimental investigation for enhancing thermal performance of vapour compression refrigeration system using nano fluids

For increasing first law efficiency in terms of COP and Second law efficiency (Exergetic Efficiency) of VCR systems.the experiment is performed on VCR system to study the effect of silver oxide Nano particle(50nm) in base fluid of ethyl glycol (50:50 ratio with water) with concentration factor 0.02 to 0.06g by volume % on hot side of system (condenser side). For high efficiency out-put, the pla...

متن کامل

Methods for Improving Thermodynamic Performance of Vapour Compression Refrigeration System Using Twelve Eco Friendly Refrigerants in Primary Circuit And Nanofluid (Water- Nano Particles Based) in Secondary Circuit

This paper describes thermal modeling of Vapor Compression Refrigeration System using R134a in primary circuit and AL2O3-Water based nanofluids in secondary circuit. The model uses information of the secondary fluids input conditions geometric characteristics of the system, size of nanoparticles and the compressor speed to predict the secondary fluids output temperatures, the operating pressure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014